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ABSTRACT: The current praxis of designing plasmonic devices by
hand, mainly guided by qualitative arguments, often derived from
simplified semianalytical theories, significantly limits the accessible
design space and, consequently, the achievable performances. In the
present work, we propose a rigorous inverse design method to engineer
three-dimensional metal nanoparticles according to a preassigned
objective function, coupling an efficient global optimization algorithm
to a full-retarded, electromagnetic solver based on the surface integral
equation method. Thus, we use the proposed strategy to design the
morphology of metal nanoparticles, maximizing the electric field average
on their surface. We performed the optimization by varying the exciting
wavelength in the ultraviolet and visible spectral ranges and the particle’s material among the most used plasmonic materials,
namely, gold, silver, and aluminum, obtaining different corresponding optimal shapes. General design criteria of nanoparticle’s
shape and size for best enhancement of electric fields are obtained. The automation of nanoparticles design enables the
engineering of numerous nanoscale optical devices such as plasmon-enhanced Raman sensors, photodetectors, light sources, and
more efficient nonlinear optical elements for on chip integration.

KEYWORDS: localized surface plasmons, optimization, field enhancement, metal nanoparticles, nanoantennas,
surface-enhanced Raman scattering (SERS)

The recent numerous discoveries in plasmonics, driven by
the advancements in nanofabrication and characterization

techniques, require to renovate the traditional electromagnetic
design paradigm, often dominated by antennas and waveguides
principles. Specific and rigorous strategies for the design of
metal nanostructures are not yet fully established. The few
design methods that have stood out so far include, for instance,
the plasmon hybridization1 which is rooted in the electro quasi-
static approximation (EQS) of the Maxwell’s equations, and the
adiabatic nanofocusing based on the eikonal (WKB) approx-
imation.2 Nevertheless, the geometries suggested by these
approaches require additional refinements by a full-wave
electromagnetic solver, carried out by sweeping the relevant
geometrical parameters through a given range. This time-
consuming design process exacerbates the delay between proof
of concept plasmonic devices and marketable technology,
which has become apparent in the past few years. On the other
hand, the automation of the plasmonic design by rigorous
inverse-design strategies could make very large search spaces
easily accessible, where the user could look for a specific
nanostructure meeting specific needs with unparalleled
accuracy. Contrary to the solution of a direct problem, which
simply aims at determining the electromagnetic field scattered
by a given particle of prescribed shape, size, and composition
under assigned excitation conditions, the inverse-design problem

consists of determining the characteristics of the scattering
object, based on the desired properties of the scattered
electromagnetic field.
Currently, the inverse design of nanoplasmonic structures is

still in its embryonic stages, mainly due to the difficulties in
solving inverse electromagnetic problems with a large number
of degrees of freedom, which requires the coupling of efficient
optimization codes with full-wave electromagnetic solvers of
high numerical accuracy, especially in the near field region. For
these reasons, several research groups have so far sidestepped
the full inverse problem, either by resorting to approximated
electromagnetic solvers or by drastically limiting the search
space. For instance, in ref 3, the authors coupled a particle-
swarm optimization to an electromagnetic solver based on the
single-dipole-approximation to design metal nanoparticle arrays
with broadband field enhancement. This work treats very large
arrays of interacting particles, each of them is modeled by a
sphere much smaller than the incident wavelength. In ref 4, a
two-dimensional electroquasistatic (EQS) numerical code, that
completely neglects retardation effects, was coupled to an
optimization algorithm in order to design the spectral
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resonance position of a deep-subwavelength plasmonic cylinder
of arbitrary cross section. In ref 5, the authors coupled a genetic
algorithm with a full-retarded solver based on the multiparticles
Mie theory to maximize the field enhancement exhibited by an
array of 3D plasmonic spheres. In refs 6 and 7, the authors
coupled an optimization algorithm to a full-retarded 2D
boundary-element method solver to optimize an infinite
plasmonic cylinder whose cross section is described by the
Gielis’ superformula. However, the optimization of a transla-
tional invariant plasmonic structure, although interesting in
principle, has a very limited applicability. The only plasmonic
scatterer that can be successfully modeled in two dimension is a
metal nanowire. On the contrary, the scattering from a
plasmonic nanoparticle is inherently three-dimensional since
the three geometrical dimensions of a typical metal nano-
particle are comparable and the use of 3D numerical methods is
therefore mandatory. An advance toward the realization of a
fully automatic plasmonic design is represented by the work of
Feichtner et al.8 They coupled an evolutionary optimization
with a 3D finite-difference-time-domain (FDTD) to tile a
checkerboard of 20 × 20 discrete gold cubes with 10 nm edge
to form a 3D plasmonic nanoantenna with maximum field
enhancement. Unfortunately, a checkerbord of cubes with 10
nm edge poorly approximates arbitrary 3D shapes. Moreover,
the FDTD method is not fully reliable to accurately compute
local electromagnetic fields in plasmonic nanostructures.9,10 In
fact, FDTD suffers from numerical dispersion11 and, when
strong field localization is present, it displays a very poor
converge in comparison to other methods.10 This fact may lead
to spurious solutions of the inverse scattering problem.
In the present work, we propose the rigorous inverse design

of the shape of three-dimensional (3D) metal nanoparticles,
aiming at the maximization of an assigned objective function in
a continuous parameter space. We tackle the inverse problem by
coupling an efficient global optimization algorithm (EGO)12,13

with a fully retarded, electromagnetic solver based on a surface
integral formulation of Maxwell’s equations14,15 that, unlike
FDTD, guarantees high accuracy in the near field region,16

allowing the reliable optimization of near-field quantities.
Differently from ref 8, not only did we exploit a more accurate
electromagnetic solver, but also implemented the optimization
on a much larger set of 3D shapes generated using Gielis’
superformula17 with a continuous parameter space, where the
values of the shape parameters belong to a hypercube rather
than to a discrete set.
Depending on the application, different objective functions

could be chosen. In particular, the optimization of far-f ield
synthetic parameters such as the scattering, absorption, or
extinction efficiencies, may help scientist and engineers
conceive novel plasmonic nanosensors with enhanced
sensitivity and minimum losses. Likewise, the reverse engineer-
ing of near-f ield quantities may also boost the performance of
many plasmonic devices. For instance the maximization of the
local electric field is critical for the improvement of
subwavelength light concentrators and Surface Enhanced
Raman Scattering (SERS) substrates,18 whereas the reverse
engineering of the local density of states (LDOS) or the Purcell
factor could suggest unanticipated strategies for accelerating
spontaneous decay rates at optical frequencies and for tailoring
light−matter interactions.19 Due to its chief importance in
Plasmonics, we chose to optimize the near field enhancement
averaged over the particle surface. Implementing the notation
used by Moskovits in ref 18, we call this quantity g. The

quantity g plays a chief role in the electromagnetic theory20−22

of SERS, being the intensity of the SERS-scattered field given
by

α λ λ= | | | |I g g I( ) ( )SERS S
2

0 R
2

0 (1)

where αS is a combination of components of the Raman tensor,
I0 is the intensity of the incident field, g(λ0) and g(λR) represent
the value of g at the pump wavelength λ0 and at the Raman-
shifted wavelength λR. In particular, for low-frequency bands,
since g(λ0) ≈ g(λS) we have with a good approximation:
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2

0
4
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It is apparent that the maximization of ISERS is mathematically
equivalent to the maximization of the average local near field at
the particle surface, namely, g(λ). Besides SERS, strongly
enhanced local field values are required in almost all practical
applications of plasmonics, including nonlinear plasmonics,23

plasmon-enhanced photodetectors24 and solar cells,25 optical
manipulators,26 modulators,27 thermal emitters,28 aperture-less
near-field scanning optical microscopy,29 and heat-assisted
magnetic recording.30

■ FORMULATION OF THE PROBLEM
Let us now formulate the inverse design problem for the
monochromatic linear electromagnetic scattering by a single
homogeneous and isotropic nanoparticle. The domain of the
electromagnetic field is the entire space 3, which is divided by
the smooth surface Σ, representing the particle’s boundary, into
the interior of the dielectric domain Ω(i), that is the particle
volume, and the external medium Ω(e). The quantities εi and εe
denote the linear permittivity of the particle and of the
embedding medium, respectively. It is apparent that a
homogeneous and isotropic nanoparticle is completely specified
by Σ and εi. They are, in principle, the unknowns of the inverse
scattering problem. Furthermore, we denote with (E0, H0) the
external field at wavelength λ, and with (E(i), H(i)) and (E(e),
H(e)) the total fields in Ω(i) and Ω(e), respectively. We can
define the scattered fields (ES

(i), HS
(i)) and (ES

(e), HS
(e)) as

=

=
Ω

= −

= −
Ω

E E

H H

E E E

H H H
in ; in

S
i i

S
i i

i S
e e

S
e e

e
( ) ( )

( ) ( )

( )
( ) ( )

0

( ) ( )
0

( )

(3)

The scattered fields have to satisfy the following equations (a
time-harmonic dependence ejωt has been assumed, where j is
the imaginary unit):
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which have to be solved with the radiation condition at infinity.
In this work, we measure the performance of a metal

nanoparticle in terms of the averaged electric-field enhance-
ment on the surface Σ, namely:

∬λ =
|Σ| Σ

g S
E
E
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d
e( )

0 (6)
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Moreover, we restrict our inverse design only to the particle’s
shape and size, setting the permittivity εi equal to that of real
world metals, that is, gold, silver, or aluminum. This is because,
although at microwaves or at the far-infrared particles exhibiting
a prescribed macroscopic value of permittivity can be fabricated
using metamaterials (e.g., ref 31), at optical frequencies this is
extremely challenging due to the difficulties in assembling
strongly subwavelength meta-elements. We also assume the
external medium to have the permittivity of air, that is, εe = ε0.
In conclusion, our goal is to find the optimal surface

morphology Σ of a homogeneous and isotropic particle of
assigned permittivity εi that, excited by the external field (E0,
H0) at wavelength λ, determines in the space an electro-
magnetic field that solves the problem of eqs 4 and 5 and
simultaneously maximizes the quantity g.
The typical scheme to tackle this problem follows the

workflow shown in Figure 1. First, we have to choose the
objective function and specify the search space where we look
for the best solution. The search space may be limited by
suitable constraints depending, for instance, on the physical
realizability of the scatterer with the available fabrication tools.
Then, we seek out the solution of the inverse problem by
iteratively coupling an optimization algorithm with an electro-
magnetic solver. Eventually, the optimization loop is terminated
once a convenient stopping criterion has been met.
Therefore, three main issues have to be addressed: (i) how to

describe the nanoparticle’s surface Σ in terms of several
parameters that define the search space; (ii) how to accurately
and efficiently solve the direct electromagnetic problem; (iii)
how to solve the inverse problem. The methods by which we
deal with these challenges will be presented in the following
paragraphs. It is also worth noting that the present formulation
can be easily extended to design the geometry of an array of
several interacting particles maximizing multiple objective
functions.

■ MORPHOLOGICAL DESCRIPTION
We parametrically describe the closed boundary Σ of the metal
nanoparticle by using a simple, unifying equation, the
superformula. J. Gielis introduced its mathematical expression
about a decade ago17 and proved it to be extremely effective to
describe a variety of forms and patterns occurring in nature,
including cells, tissues, stems, flowers, shells, starfish, galaxies,
and DNA molecules.32 The importance of the superformula in
inverse engineering was envisioned by Gielis himself,33 and it
was already used for the synthesis of RF-antennas.34 It was first

introduced in Plasmonics by Rodriǵuez-Oliveros and Sańchez-
Gil to describe the shape of 3D plasmonic nanoparticles35 and,
in its 2D form, was also used for the inverse design of
translational-invariant plasmonic cylinders.6,7 The Gielis’ super-
formula in three dimensions has the mathematical expression:
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and θ ∈ [−π/2, π/2], ϕ ∈ [−π, π]. From eqs 7 and 8 it is
apparent that the superformula can be completely described by
13 parameters, six of them, that is, m(ϕ), n1

(ϕ), n2
(ϕ), n3

(ϕ), a(ϕ), and
b(ϕ) modulate the shape along the azimuthal angle ϕ, while the
parameters m(θ), n1

(θ), n2
(θ), n3

(θ),a(θ), and b(θ) control the variation
of the shape along the altitude angle θ (zenith). The remaining
parameter η controls the scaling of the resulting shape.
However, being interested in shapes compatible with planar
nanofabrication technology we keep fixed the altitude
parameters:

=

= ∀ =

= =

θ

θ

θ θ

m

n i

a b

2;

2 1, 2, 3;

1

i

( )

( )

( ) ( ) (9)

Moreover, in order to exclude from the optimization space
shapes with extremely sharp edges we impose the following
constraints on the azimuthal parameters:

Figure 1. Flowchart of a general optimization scheme for the solution of inverse design problems.
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Finally, in order to avoid excessively small or large particles we
also set constraints on the scaling factor η:

μ× ≤ ≤ ×− −25 10 75 109 9 (11)

In conclusion, we have reduced the inverse problem of
designing the nanoparticle shape to a constrained optimization
with respect to only seven parameters. Figure 2 illustrates

several exemplificative shapes that can be generated using the
3D superformula, with the constraints specified by eqs 9 and
10; their parameters are listed in Table 1. We conveniently

group them into three families, besides the sphere, our
optimization domain contains polygonal particles (e.g., nano-
square nanorod, nanodisk, nanotriangle, bow-tie particle) and
branched particles (e.g., monopod, bipod, nanoarrow, tripod,
tetrapod, pentapod, hexapod). By continuously varying the
parameters of the superformula, we are able to smoothly
transform any shape of Figure 2 into another. It is worth
pointing out that shape-controlled spheres and polygonal
nanoparticles can be synthesized using both chemical
methods36−41 such as seed-mediated, light-mediated growth,
and polyol process and with electron beam lithography (see, for

instance, ref 42 for nanorods, ref 43 for disks and triangles, and
ref 44 for gapless bow-ties). Moreover, the seed-mediated
method is one of the most useful chemical approaches for the
preparation of branched structures,45−49 together with electron
beam lithography.50 At every step of the optimization process
triangular surface meshes of the superformula are automatically
generated using the “3D Surface Mesh Generation” package51

of the Computational Geometry Algorithms Library (CGAL).52

■ DIRECT ELECTROMAGNETIC PROBLEM

In order to perform the inverse design, a solver of the direct
electromagnetic problem is required. The desired solver should
be at the same time fast, because it has to be executed a large
number of times in a standard global optimization algorithm,
yet accurate. The latter requirement is particularly compelling
since we are interested in the accurate evaluation of electric
field in the near-zone of a plasmonic particle, which is usually
not easy to achieve if compared to any far-field quantity.16

For instance, the FDTD method, although widely used in the
analysis of plasmonic structures, appears to be inadequate when
high accuracy is required.9,10 The FDTD method, with a regular
square grid, not only poorly approximates arbitrary boundaries,
but also suffers from staircasing effects, which drastically reduce
its numerical accuracy.9 In addition, spurious solutions can be
introduced by the well-known numerical dispersion of the
algorithm.11 Furthermore, the poor performances of FDTD are
exacerbated when strong field localization is present.10

On the contrary, electromagnetic surface integral formula-
tions14 (SIE), although they are only applicable to piecewise
uniform materials, are particularly efficient because they only
require a surface discretization without sacrificing the near-field
accuracy. Thus, we reformulated the electromagnetic problem
given by eqs 4 and 5 in terms of Surface Integral Equations
(SIE). In particular, we used the JMCFIE formulation.15 We
numerically solved this formulation using the Method of
Moments (MoM) with the Rao-Wilton-Glisson (RWG) basis
functions.53 We also managed the weak singularities with the
techniques described in ref 54. A detailed analysis of the
accuracy of the local fields in proximity of metal nanoparticles
calculated by the JMCFIE formulation can be found in ref 16.

■ OPTIMIZATION

The averaged field enhancement g is a time-consuming quantity
to evaluate accurately even using the SIE solver. Unfortunately,
many standard global optimization algorithms, including
genetic algorithms, particle-swarm optimization or simulated
annealing are designed for objective functions that are
inexpensive to evaluate.55 Therefore, we need an efficient
algorithm, namely, an algorithm that requires less objective
function evaluations, and that carefully chooses where to
evaluate it to maximize the information gained at every step. In
particular, the Efficient Global Optimization (EGO) is a global
optimization algorithm based on response surface surrogates
that satisfy both requirements.12,13

The procedure of the EGO algorithm follows the steps
summarized in the flowchart shown in Figure 3. First, we
construct a tentative Gaussian process (GP) model of the
objective function g defined in eq 6, that will be refined during
the subsequent iterative process. The GP is a model that closely
mimics the behavior of the average electric field enhancement g
as a function of the superformula parameters, being able to
provide an estimate of the value of g and the corresponding

Figure 2. Exemplificative shapes generated by the 3D Gielis’superfor-
mula, namely, (1) nanosphere, (2) nanosquare, (3) nanorod, (4)
nanocylinder, (5) nanotriangle, (6) bow-tie, (7) monopod, (8) bipod,
(9) nanoarrow, (10) tripod, (11) tetrapod, (12) pentapod, and (13)
hexapod.

Table 1. Superformula Parameters Describing the
Exemplificative Shapes Shown in Figure 2

m(ϕ) n1
(ϕ) n2

(ϕ) n3
(ϕ) a(ϕ) b(ϕ)

nanosphere 2.00 2.00 2.00 2.00 1.00 1.00
nanosquare 3.96 2.64 3.68 4.65 1.14 1.14
nanorod 4.08 3.52 3.15 5.35 1.28 1.91
nanodisk 2.00 2.00 2.00 2.00 2.00 2.00
nanotriangle 5.86 4.73 3.02 4.19 0.66 1.90
bow-tie 4.01 1.72 5.50 5.89 1.16 0.67
monopod 2.89 1.78 5.06 3.01 1.83 1.09
bipod 2.95 3.62 5.78 5.82 0.74 1.96
nanoarrow 4.83 2.30 4.66 1.74 1.53 0.77
tripod 5.94 0.92 2.20 0.99 0.65 1.73
tetrapod 7.92 1.65 2.10 2.83 0.61 1.53
pentapod 4.85 1.51 5.23 4.02 1.03 1.27
hexapod 6.00 1.37 5.94 3.58 1.50 2.00
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uncertainty with a reduced computational burden. We build it
based on a set of N = 36 sample points, called training points,
belonging to the search space spanned by the superformula
parameters and on the corresponding real values of g evaluated
by the direct SIE solver. Then, we start the iterative process. At
each iteration, we maximize a quantity called Expected
Improvement Function (EIF), using a deterministic global
optimization algorithm. The function EIF is defined as the
expectation that any point in the search space will improve the
current optimal solution, and it is estimated based on the
expected values of g and of the corresponding uncertainties
obtained by the GP model.13 Thus, we choose the point at
which the EIF is maximized as an additional training point for
the GP. Therefore, EGO balances between exploring areas of
the search space where good solutions have been found and
area where the uncertainty is high to refine the GP model.
When the value of EIF is sufficiently small, the iteration process
is stopped. We employ the software DAKOTA13 developed at
Sandia National Laboratories to implement EGO.

■ RESULTS
We now present the inverse design of metal nanoparticles that
maximize the value of g when excited by a monochromatic
plane-wave of unit intensity, linearly polarized along the x-axis
and propagating along the z-axis.

■ GOLD

First, we perform the inverse design of gold nanoparticles at
different wavelengths λ within the range [400, 900] nm. The
gold dispersion has been modeled by interpolating the
experimental data of Johnson and Christy.56 The superformula
parameters obtained by the EGO algorithm are listed in Table
2. The corresponding shapes are shown in Figure 4a, together
with the ∥E∥-field distribution on Σ. Next, in Figure 4b, we plot
the achieved optimal values of g as a function of the wavelength
λ. In the last panel, for each of the shapes shown in panel (a),
we numerically calculate, using the SIE method, the g spectrum
as a function of the incident wavelength.
The achieved optimal shapes at λ = 400 and 500 nm, shown

in the subpanels of Figure 4a labeled with a red square and a
blue circle, resemble nanorods and feature g = 2.0 and 2.5,
respectively, as listed in Table 2. It is also apparent from the
corresponding g spectra shown with red and blue curves in
Figure 4c that we are in the tail of the plasmonic resonance,
being the degrees of freedom of the geometry not sufficient to
blue-shift the plasmonic resonant wavelength to λ = 400 and
500 nm due to the material constraint. Next, at 600 nm, the
optimal shape, shown in subpanel Figure 4a (green triangle),
still comes closer to a nanorod, although slightly perturbed by a
narrowing of its transverse width, with a longitudinal length
increased if compared to the subpanels identified with a red
square and a blue circle. Moreover, the corresponding g
spectrum, shown with a green curve in Figure 4c, has its peak
exactly at the prescribed optimization wavelength; this fact has
a beneficial effect on the achieved value of g, which increases to
9.6. At 700 nm the optimal shape is the tripod labeled with a
cyan diamond, featuring three hot spots at the end of each arm.
As apparent from Figure 4b its value of g, that is 20.2, is the
highest among all the investigated wavelengths. As in the
previous scenario, the cyan curve in Figure 4c demonstrates
that the EGO algorithm exactly tunes the plasmonic resonant
peak to the prescribed wavelength, that is, 700 nm. In Figure
4a, we show that the optimal shape obtained at 800 nm and
identified with a magenta star is a gapless bow-tie, but the
obtained value of g decreases with respect to the previous case.
This fact demonstrates that although the plasmonic resonance
can be easily red-shifted by acting on the shape, the optimum
performance nevertheless suffers a detrimental effect. In the
subpanel of Figure 4a labeled with a yellow inverted triangle we
show that the optimal shape at 900 nm is again a tripod with
longer arms with respect to the case at 700 nm. We conclude
from the analysis of Figure 4c that, besides the first two
scenarios, the g spectra of the optimal shapes we found always
reach their peak at the prescribed optimization wavelength.
This result is a natural consequence of the maximization of g,

Figure 3. Flowchart of the EGO algorithm scheme for the solution of
inverse design problems.

Table 2. Superformula Parameters Describing the Inverse-Designed Au Nanoparticles with Optimal g

λ (nm) m(ϕ) n1
(ϕ) n2

(ϕ) n3
(ϕ) a(ϕ) b(ϕ) η (nm) g

400 4.64 4.04 4.24 2.90 1.50 0.92 26 2.0
500 4.20 4.15 2.49 4.84 1.28 0.72 30 2.5
600 4.38 2.62 4.91 3.37 1.26 0.50 36 9.6
650 6.57 6.0 5.92 5.99 1.88 0.50 37 11.6
700 6.10 3.4 4.33 4.25 2.0 0.50 25 20.2
750 5.94 1.80 2.88 3.85 0.50 1.39 51 9.51
800 4.18 2.73 4.71 5.71 1.67 0.50 38 13.7
850 8.0 2.49 6.0 5.43 1.71 7.75 25 13.83
900 6.14 2.70 6.0 4.52 2.0 0.83 25 15.0
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and further supports the effectiveness of our method. Beside
the finding of optimal shapes, this study also establishes, in the
broad domain of shapes spanned by the superformula, an upper
bound for the average electric field achievable on the surface of
an isolated particle, which is g = 20.2 for Au. This is of great
practical importance because it is directly related to the
maximum performances accessible by the plasmonic devices
based on noninteracting metal nanoparticles.
In order to support the results found so far with the EGO

algorithm, we compare the achieved optima with the values of g
calculated for several canonical shapes found in the
literature36−50 and described in terms of the superformula
parameters. We carry out this analysis using the direct SIE
electromagnetic solver for the case of gold at 700 nm, where we
found the peak value of g (see Figure 4b). We calculate the
values of g for the shapes 1−12 shown in Figure 2 with η = 25
nm, and we plot the corresponding ∥E∥-field distribution on Σ
in Figure 5. Among the considered tentative shapes, the best
ones are in the order the gapless bow-tie (g = 8.6), monopod (g
= 7.2), and tetrapod (g = 6.8). We conclude that the maximum

value of the g obtained in Figure 5, that is 8.6, is much lower
that the maximum obtained using the inverse design strategy
(i.e., 20.2). Figure 5 is also instrumental to show that, although
the maximum and the averaged field enhancement g on Σ are
correlated, high values of g do not always guarantee high values
of maximum field enhancement and vice versa. For instance,
among the particles shown in Figure 5, the shape #6 features
the highest value of g, but has a pretty low value of the
maximum enhancement, as apparent from the colorbar; on the
contrary the shape #7, which features a much higher value of
maximum enhancement, has a lower value of g than shape #6.
In fact, in the shape #7, high electric fields play a minor role in
the calculation of g by eq 6 because they are only localized on a
very small surface area in the neighborhood of the nanoarrow’s
three tips; whereas shape #6 shows a lower but more
distributed electric field magnitude, which guarantees a higher
average.

Figure 4. (a) Inverse-designed Au nanoparticles and corresponding ∥E∥-field distribution (V/m, linear scale) on Σ. The particles are excited by a x-
polarized plane wave of unit electric field magnitude (1 V/m) propagating along the z-axis at wavelength (red square) 400 nm, (blue circle) 500 nm,
(green triangle) 600 nm, (cyan diamond) 700 nm, (magenta star) 800 nm, (yellow inverted triangle) 900 nm. All scale bars correspond to 50 nm.
(b) Optimal value of g as a function of the incident wavelength. (c) g spectra calculated for the optimal shapes as a function of the incident
wavelength; each curve corresponds to the particle of panel (a) labeled by the symbol of corresponding color.

Figure 5. ∥E∥-field distribution (V/m, linear scale) on the exemplificative shapes introduced in Figure 2 with η = 25 nm, namely, (1) nanosphere
with g = 1.8, (2) nanosquare with 2.1, (3) nanorod with 1.7, (4) nanocylinder with 2.4, (5) nanotriangle with 2.4, (6) bow-tie with 8.6, (7) monopod
with 7.2, (8) bipod with 1.8, (9) nanoarrow with 4.4, (10) tripod with 5.0, (11) tetrapod with 6.8, (12) pentapod with 2.8. The particles are excited
by a x-polarized plane wave of unit electric field magnitude (1 V/m), propagating along the z-axis at wavelength 700 nm. All scale bars correspond to
50 nm.
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■ SILVER
We now present the results of the inverse design of silver (Ag)
nanoparticle within the spectral range [200, 500] nm. We used
the Ag permittivity obtained by interpolating the experimental
data of Johnson and Christy.56 The parameters of the
superformula defining the optimal scatterer obtained by the
EGO method are listed in Table 3 for several wavelengths; the

corresponding ∥E∥-field distributions on Σ are shown in Figure
6a. Additionally, in Figure 6b, we plot the achieved optimal
values of g as a function of the optimization wavelength λ. In
the panel (c), we show the g spectrum of the found optimal
shapes as a function of the incident wavelength. At the deep-
ultraviolet wavelengths, λ = 250 and 300 nm, the optimal
shapes resulting from the optimization process are approx-
imatively nanospheres, as shown in the subpanels of Figure 6a
labeled with a red square and a blue circle, respectively.
Unfortunately, at these wavelengths the silver does not exhibit
good plasmonic properties and this is reflected in modest values
of g, namely, 1.6 and 1.4, respectively. In facts, we are in the tail
of the plasmonic resonant curve, as apparent if we examine the
corresponding g spectra shown with red and blue curves in
Figure 6c. Increasing the wavelength to 350 nm the optimal
shape is the nanorod identified with a green triangle in Figure
6a, which features a much higher value of g, that is 10. At 375

nm the inverse design algorithm returns approximately a
prolate spheroids with g = 19, identified in Figure 6a with a
cyan diamond. Then, the objective function reaches its peak at
λ = 400 nm, where the nanorod labeled with a magenta star
exhibits g = 22, which is the highest value that we are able to
achieve for Ag, as shown in Figure 6b, and only slightly
surpasses the maximum value obtained for gold. Finally, at 450
nm, the tetrapod identified with a yellow inverted triangle in
Figure 6a maximizes the value of g. Moreover, it is apparent that
the g spectra of the optimal shapes, shown in Figure 6c, feature
their peak values at the prescribed optimization wavelength, in
all but the first two cases. As in the case of Au, this fact further
corroborates the EGO efficacy for the design of Ag nano-
particles. It is worth noting that the scale factor η of the
optimized particles, shown in Table 3, assumes in most of the
investigated scenarios the minimum allowed value prescribed
by the assigned constraint of eq 11. This fact suggests that by
relaxing the lower bound of η we may obtain different optimal
shapes with higher value of g. However, this will results in
particles too small to be fabricated with the current technology,
and therefore outside the scope of this study.

■ ALUMINUM

As apparent from Figures 4b and 6b gold and silver do not
exhibit satisfactory plasmon properties in the ultraviolet spectral
range (UV), as consistently demonstrated by previous studies
(e.g., ref 57). Unlike coinage metals, aluminum (Al) holds great
potential to extend the plasmonic properties into the ultraviolet
spectral range,58,59 bearing the promise of enhancing the
emission of fluorophores,60−64 biomolecules65 and UV-light-
emitting diodes (LEDs) based on III−V nitride semi-
conductors, such as GaN or InGaN. For this reason, we also
perform the inverse design of Al nanoparticle within the UV
spectral range [100, 400] nm, using the Al permittivity
measured by Palik.66

The results of the EGO algorithm are summarized in Table
4; the corresponding shapes are represented in Figure 7a, where
the corresponding ∥E∥-field distributions on Σ are also shown.

Table 3. Superformula Parameters Describing the Inverse-
Designed Ag Nanoparticles with Optimal g

λ (nm) m(ϕ) n1
(ϕ) n2

(ϕ) n3
(ϕ) a(ϕ) b(ϕ) η (nm) g

200 1.01 4.43 4.26 2.00 0.50 0.73 25.0 1.6
250 1.01 4.04 4.26 5.43 0.82 0.70 25.0 1.6
300 3.32 2.50 3.68 0.76 0.72 0.51 32.7 1.4
325 3.32 0.93 4.26 1.34 0.50 0.50 25 1.8
350 1.01 3.66 4.26 1.90 0.50 0.50 25 10
375 3.80 4.43 0.76 3.76 0.50 0.50 25 19
400 4.38 5.71 0.89 6.00 1.39 0.50 25 22
450 7.58 6.00 3.68 3.27 0.52 2.00 26 16

Figure 6. (a) Inverse-designed Ag nanoparticles and corresponding ∥E∥ distribution (V/m, linear scale) on Σ. The particles are excited by a x-
polarized plane wave of unit electric field magnitude (1 V/m), propagating along the z-axis at wavelength (red square) 250 nm, (blue circle) 300 nm,
(green triangle) 350 nm, (cyan diamond) 375 nm, (magenta star) 400 nm, (yellow inverted triangle) 450 nm. All scale bars correspond to 25 nm.
(b) Optimimum value of g as a function of the incident wavelength. (c) g spectra calculated for the optimal shapes as a function of the incident
wavelength; each curve corresponds to the particle of panel (a) labeled by the symbol of corresponding color.
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The optimal shapes are, in order of complexity, a prolate
particle for λ = 150 nm (identified with a blue circle in Figure
7(a)); a bow-tie particle for λ = 350 nm (yellow inverted
triangle); a tripod for λ = 200 (green triangle) and λ = 250
(cyan diamond); a tetrapod for λ = 100 nm (red square) and λ
= 300 nm (magenta star). Similarly to Ag particles, in all but
one investigated scenarios, the Al optimized particles assume a
value of the scale factor η equal to the minimum value allowed
by eq 11. Therefore, also in this case by relaxing the lower
bound of the η we may obtain differently shaped particle with
better performances, which, however, would be too small to be
manufactured with the current technology. In Figure 7b we plot
the optimum values of g as a function of the incident
wavelength λ. The highest value of g of 12 is obtained for λ =
150 nm. This fact proves the suitability of Al for UV
applications even if the quality of its plasmon resonance in
terms of g appears to be worse than the analogous resonances

of Ag and Au in the visible. Moreover, the fact that, besides the
λ = 100 nm scenario, the g spectra of the optimal Al shapes,
calculated in Figure 7c, are always peaked at the prescribed
optimization wavelength further validates the EGO inverse
design.
In conclusion, for Au and Al (Figures 4a and 7a) branched

particles are a very common solution of the inverse design
problem; contrarily, the Ag optimization give rise to more
compact shapes like spheres and ellipsoids. This difference may
be traced back to the different dispersion of the three materials,
since the Ag has a higher quality factor, that is,

λ λ λ= ℜ ϵ ℑ ϵQ ( ) { ( )}/ { ( )}i i , than Au and Al (see, for instance,
ref 67 for a comparison of the quality factors Q as a function of
the frequency).
However, any practical implementation of this approach

requires the achieved optimal value of g to be robust against
manufacturing uncertainty. Thus, we represent the uncertainty

Table 4. Superformula Parameters Describing the Inverse-Designed Al Nanoparticles with Optimal g

λ (nm) m(ϕ) n1
(ϕ) n2

(ϕ) n3
(ϕ) a(ϕ) b(ϕ) η (nm) g

100 8.00 1.56 2.50 0.76 0.50 0.96 25 4.9
150 4.10 1.84 2.73 3.57 0.50 0.50 25 11.4
200 5.94 0.87 0.76 6.00 0.50 0.80 25 7.8
250 6.45 3.37 3.33 6.00 1.06 0.51 25 6.4
300 8.00 4.35 5.43 4.26 0.50 1.47 25 6.4
350 4.10 4.25 5.72 6.00 1.50 0.50 25 6.9
400 4.38 3.03 5.25 6.00 1.43 0.50 28 6.4

Figure 7. (a) Inverse-designed Al nanoparticles and corresponding ∥E∥ distribution (V/m, linear scale) on Σ. The particles are excited by a x-
polarized plane wave of unit electric field magnitude (1 V/m), propagating along the z-axis at wavelength (red square) 100 nm, (blue circle) 150 nm,
(green triangle) 200 nm, (cyan diamond) 250 nm, (magenta star) 300 nm, (yellow inverted triangle) 350 nm. All scale bars correspond to 25 nm.
(b) Optimimum value of g as a function of the incident wavelength. (c) g spectra calculated for the optimal shapes as a function of the incident
wavelength; each curve corresponds to the particle of panel (a) labeled by the symbol of corresponding color.

Figure 8. Percentage changes of g resulting from a 0.5% increase of the seven superformula parameters in the case of (a) gold, (b) silver, and (c)
aluminum.
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on the particle’s shape as a deterministic variation of the
superformula parameters within the neighborhood of the
optimal value, and we determine the corresponding suboptimal
value of average field enhancement g ̃ on Σ. We then
characterize the robustness of our solution using the relative
difference between the optimal and suboptimal values of
averaged electric field:

δ =
| − |̃

g
g g

gr (12)

In particular, we investigated the robustness of the optimal
shapes featuring the highest value of g for each material,
namely, the optimal Au particle at 700 nm, labeled with a blue
diamond in Figure 4a; the optimal Ag particle at 400 nm,
labeled with a magenta star in Figure 6a; and the optimal Al
particle at 150 nm, labeled with a blue circle in Figure 7a. The
corresponding seven parameter describing the superformula,
listed in Tables 2, 3, and 4, are increased by 0.5% one at the
time, and the corresponding values of δgr are shown in Figure 8
for the three investigated cases. It is apparent that, irrespectively
to the material, a 0.5% variation of any of the superformula
parameters determines, in the worst case, a small variation (i.e.,
δgr ≈ 1%) of the electric field average on Σ. This fact
demonstrates that the performance of the optimized particles is
relatively immune to small geometrical variations of the
particle.

■ CONCLUSIONS
We have developed and implemented a method to inverse-
design three-dimensional plasmonic nanoparticles. Contrary to
existing inverse-design strategies, our method allows the
optimization of three-dimensional nanoparticles searching
within a continuous parameter space, and exploiting a full-
wave integral electromagnetic solver, which is accurate and
reliable in the near-field region. Our approach could be used to
optimize either far-field or near-field quantities and easily allows
to incorporate the limitations of fabrication as optimization
constraints. Specifically, in this paper, we demonstrate its
effectiveness by designing the nanoparticle’s shape in order to
maximize the field enhancement averaged over its surface,
which plays a fundamental role in the surface enhanced Raman
scattering and for the subwavelength focusing of light. Design
criteria of nanoparticle’s shape and size are obtained for
different plasmonic materials. In particular, our optimizations
demonstrate that branched particles are the preferred shape for
materials with low quality factor, such as gold and aluminum.
Conversely, for silver nanoparticles featuring an higher quality
factor, the algorithm selects more compact shapes with higher
values of averaged field enhancement. This study also provides
an upper bound for the average surface electric field which can
be obtained for an isolated particle of Au, Ag, and Al, which is
directly related to the maximum performances achievable by
the plasmonic devices based on the optimized particle, for
example, SERS substrates. We also show the reliability and
robustness of the identified optimal solutions against
morphological fluctuations. Furthermore, the extension of the
present method to design the geometry of arrays of several
interacting particles maximizing multiple objective functions is
straightforward. Our results demonstrate that the use of
optimization algorithms in combination with the rigorous
surface integral equation method represents a practical venue
for device level engineering of metal nanostructures, providing

unanticipated solutions to numerous exciting problems in
plasmonics.
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